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We present a completely new variational algorithm for computing 
dendritic solidification. This algorithm reproduces the Gibbs-Thomson 
relation as a balance between bulk and surface energy and is able to 
operate in the infinite-mobility limit with no unphysical time-step 
restriction. It may be used with arbitrary non-smooth surface energy 
functions and may include finite kinetic mobility. We perform computa- 
tions with isotropic and anisotropic surface energy; from a small 
irregular initial seed we generate radial tip-splitting structures for 
isotropic energy and parabolic dendrites with side-branching for 
anisotropic energy. For anisotropic energy, the final structure is deter- 
mined by the material and environmental properties; the initial shape is 
forgotten. For the parabolic dendrite tips, we obtain agreement with the 
lvantsov solutions within a few percent and proper dimensional scaling 
of lengths and velocities with surface energy. 0 1993 Academic Press, Inc. 

INTRODUCTION 

The various phenomena associated with dendritic 
solidification are some of the most fascinating and impor- 
tant examples of spontaneous pattern formation in nature. 
One spectacular case is the growth of a snowflake in the 
atmosphere, following nucleation on a microscopic speck of 
dust. The final shape of the snowflake, often complex, sym- 
metric, and beautiful, is determined by the atmospheric con- 
ditions and the physical properties of ice, air, water vapor, 
and the ice/vapor interface; the exact mechanisms are far 
from clear. Dendritic solidification is of immense practical 
importance: “every day nearly two million tons of steel are 
frozen: all of this steel has undergone a process of dendritic 
growth” [lo]. Even a more modern application is zone 
refining of semi-conductor materials [32]; if the process is 
run too rapidly the interface becomes unstable and the 
product is of poor quality. From a scientific point of view we 
would like to understand how the shapes of snowflakes are 
created from vapor; from a practical point of view we need 
to understand how interfacial instability may be controlled 
or prevented. 

In the 1930s and early 194Os, Nakaya [26] observed 
natural snowflakes, and classified their structures into 

several types: needle, plate, dendritic, etc. In an effort to 
understand how their shapes were determined, he built an 
experimental apparatus, in which he was ultimately able to 
reproduce all the naturally occurring shapes by varying two 
parameters: the air temperature and the supersaturation of 
water vapor. The celebrated “Nakaya diagram” identifies, 
for each point in the temperature-supersaturation plane, 
the unique type of snowflake growth which occurs under 
those conditions. In general, if these parameters changed 
with time, the instantaneous conditions determined the 
mode of growth at each moment, and he was able to identify 
a mapping between time histories of these two environmen- 
tal parameters and final crystal shapes. Further experiments 
were performed by Kobayashi [20]. Since this mapping 
was consistently reproducible, we may believe that the 
experiments correctly identified the key factors which 
determine snowflake growth. 

The computational project described in this paper is in 
the same spirit as Nakaya’s experiments. In a computer 
model, we control not only the environmental parameters, 
but the physical laws themselves. If we are able to reproduce 
realistic shapes such as snowflakes or the dendritic 
microstructures of freezing metal, using a model which 
incorporates only a few physical effects, then we may believe 
that we have identified the key features of the problem. 

We study a model system of equations which incor- 
porates only anisotropic interfacial surface tension, as 
expressed in the Gibbs-Thomson condition, Eq. (1) below, 
and release and flow of latent heat of fusion as liquid freezes 
to solid (2). Interfacial instability arises due to the coupling 
between the shape of the interface and heat flow through the 
surrounding liquid, leading to dendritic shape generation. 
This system is believed to describe very well the freezing of 
a solid material from its liquid melt, as in the casting and 
zone refining examples mentioned above. Whether these 
effects are sufficient to explain the shapes of snowflakes is 
one of the questions this project is ultimately intended to 
answer. 

In particular, one mechanism which we do not necessarily 
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include in our model is finite kinetic mobility of the interface 
(the inverse mobility u > 0 in (8) below). Our belief is that 
this effect, while certainly present physically to some extent, 
is not a necessary element of the pattern-generation 
mechanisms we are interested in. We would like first to 
understand the dynamics of solidification without this 
effect, the better to understand the consequences of 
including it. For the special case of snowflake growth, inter- 
facial mobility may in fact be a controlling mechanism, as 
suggested by the numerical simulations of [39] which 
include only mobility and heat flow, but for solidification 
from a melt it is thought to be much less important. 

The problem of diffusion-controlled solidification has 
attracted much theoretical interest. Linear stability analysis 
of advancing planar interfaces and growing spheres was 
studied in [24,25], identifying the fundamental instability 
mechanism. More recently, attention has been focused 
on the role of small surface tension in stabilizing and in 
selecting shape and velocity of a dendritic tip [17]. For 
reviews of this work, see [ 18,211. 

In recent years, several numerical algorithms have 
been constructed for simulating this problem in its full 
geometrical complexity, most notably level-set formulation 
combined with boundary-integral methods [3 11, and 
phase-field models [9, 19, 381. In general, these methods 
rely on introducing a finite kinetic coefficient a > 0, in the 
sense that the computations necessarily become more and 
more expensive as a + 0. (Conformal mapping techniques 
[7] do not require finite kinetics, or even finite surface 
energy, but they apply only in two space dimensions and 
only in the “quasi-static” limit.) In this paper, we introduce 
an entirely new class of numerical methods which do not 
have this limitation; they work (in any dimension) for any 
value a > 0 and the performance does not degrade in the 
infinite-mobility limit. 

We take the point of view that the Gibbs-Thomson 
boundary condition (1) expresses an equilibrium between 
minimization of bulk and surface energy and design an algo- 
rithm which represents the time-dependent solution of the 
equations of motion as the limit of a sequence of solutions 
to a set of variational problems. This is fundamentally dif- 
ferent from algorithms which extract an expression for the 
interface normal velocity in terms of local conditions such as 
temperature and curvature. Such formulations typically 
have stringent stability limits on the time step and require 
computation of interface curvature, a second derivative 
which can be very poorly behaved. Our algorithm has no 
unphysical time-step restrictions. The surface energy enters 
only as an integral; thus the formulation is well-defined, 
even for non-smooth and non-convex surface energy 
functions, and may be used to derive the correct form of the 
Gibbs-Thomson condition for those functions. 

The research project whose computational results are 
described here has had as its original goal the numerical 

simulation of crystal growth. But understanding the 
problem sufficiently clearly to implement it on a computer 
required developing a new formulation, and this formula- 
tion was powerful enough to lead to new rigorous results. 
Convergence of the variational algorithm has been estab- 
lished [2,22] (for the discrete-time, continuous-space 
version). Besides providing highly desirable support for the 
numerical work, this analysis establishes for the first time 
the existence of solutions to the model equations. This is a 
nice example of the interconnectedness of modern applied 
mathematics and the interplay between computation and 
theory. 

The paper is organized into four sections: In Section 1 we 
review the equations which govern the physical problem, 
and present the Mullins-Sekerka stability analysis and a 
few exact solutions. In Section 2 we present a class of 
variational algorithms which are closely based on physical 
principles such as minimization of Gibbs free energy. In 
Section 3 we present a variational formulation derived from 
the formulations of Section 2, modified to be efficient 
enough for practical computation. We show how finite 
kinetic effects may be easily incorporated, and briefly 
discuss the numerical implementation. Section 4 contains 
results of two-dimensional computations. We first verify the 
correctness of the method using test problems with circular 
symmetry and zero surface energy, and we investigate 
robustness to perturbation of the interface position. We 
then present large-scale computations. 

With the initial solid region as a small irregular seed, we 
generate large fingered structures. For isotropic surface 
energy, the structures have the tip-splitting form charac- 
teristic of radial growth. For anisotropic surface energy, 
parabolic dendrite tips emerge. We obtain quantitative 
agreement with Ivantsov solutions. To our knowledge, the 
only other general-purpose numerical methods to have 
reported such agreement are the related work described in 
[27,28], in which the interface is modelled as a polygon 
with fixed normal directions given by the Wulff shape, and 
the very recent phase-field computations reported in [38]. 

In addition, we formulate a principle of remem- 
bering/forgetting the initial conditions, valid when the 
initial shape is not too different from a circle. For a small 
initial seed, the initial irregularities quickly relax to an 
“attracting” shape determined by the surface energy: round 
for isotropic, more polygonal for anisotropic. For a certain 
period, the seed grows, maintaining this shape; when it is 
large enough, instability sets in and fingers develop. For 
isotropic surface energy, although the seed is nearly round, 
the perturbations which start the instability are entirely 
provided by the initial conditions; thus basic features of the 
initial shape such as principal mode number and orientation 
are propagated into the large-scale structure. 

For anisotropic surface energy, the attracting shape is a 
smoothed polygon, with mode number and orientation 
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determined by the surface energy function. This shape con- temperature must be colder than T,; otherwise the bump 
tains all the structure necessary to kick off the instability; would immediately melt and pull back to reduce interface 
the initial shape is completely forgotten. energy. 

We also verify proper scaling with the magnitude of sur- 
face energy, the only parameter in the problem. We identify 
one of our example computations as very inaccurate, 
although it has the correct value of the Peclet number and 
to the eye appears reasonable. The numerical errors are 
evidently such as to produce wrong values of the tip radius 
and velocity while generating the correct product. 

The evolution of the temperature field T(x, t) is governed 
by two facts: first, that heat flows at a finite rate through the 
bulk material, and second, that as the interface advances 
and liquid turns to solid, latent heat of fusion L is released 
at the interface. The heat released in an interval of time in a 
neighborhood of r is L times the net volume of material 
which has changed from liquid to solid in that time interval. 
Thus T(x, t) is the weak solution of the heat equation with 
singular source term 

1. THE PHYSICAL PROBLEM 

1.1. Governing Equations 
Cg=div(rcVT)+LV(x, t)dr in Q. (2) 

We are interested in describing the advance of a freezing 
front in a cooling liquid. Suppose 52 c Rd (dimension d= 2 
or 3) is a box full of a pure material which at each point at 
each time may be either liquid or solid, and let E(t) c Q 
denote the solid region; the liquid region is the complement 
Q\Z. Let T(x, t) denote the temperature field in Q. Given an 
initial solid configuration C,, an initial temperature field 
To(x), and suitable boundary conditions for T on the box 
boundary %2, the problem is to determine the subsequent 
evolution of Z(t) and of T(x, t). For simplicity, we shall 
assume that the liquid/solid interface r = aZ does not come 
near the box edge %2. We are especially interested in the 
“supercooled seed” configuration, in which C, is a small 
region near the center of 52, and T decreases away from Z 
into the liquid. 

Here K is the heat conductivity and C is the heat capacity 
per unit volume; for simplicity, we shall take both of these 
quantities to have the same value in the solid and the liquid 
phases. V(x, t) is the local normal velocity of the interface r, 
positive if the freezing interface is advancing into the liquid, 
and 6, is a Dirac mass concentrated on the hypersurface f. 

In terms of the non-dimensional temperature 

u=;(T-TM), 

and scaling time by a factor K/C, (1) and (2) become 

The geometry and the temperature field must be 
connected by suitable boundary conditions on ZY In the sim- 
plest formulation which takes into account the surface 
energy of the liquid/solid interface, we impose the Gibbs- 
Thomson boundary condition ([ 13,361; see reviews 
[ 18,21]), approximately valid when temperatures are not 
too far from the bulk melting temperature TM and interface 
curvatures are not too large: 

u= --ox- D onr 

au at=du+ V(x, t) 6, in 0, 

where 

CT, - 
ieLzy 

T=T,(l-g%) on lY (1) 

The surface energy per unit area y(n) is a function of the 
local surface normal direction n; in (1 ), 7 denotes the 
average of y over n, and XY denotes the “weighted mean cur- 
vature” [ 343 of rfor the surface energy function y(n), which 
depends only on the anisotropic part y/v. For smooth 
energy functions y(n), X, is a weighted sum of the principal 
curvatures of r; for isotropic surface energy y(n) = 7, and X, 
is just the mean curvature (see (22) below). The constant L 
is the latent heat of fusion per unit volume. This condition 
expresses a local equilibrium between bulk and surface 
effects: for a bump of solid (X >O) to exist, the local 

is a capillary length. Note that X, = XY since o(n) and y(n) 
differ only by a scale factor. 

It is sometimes convenient to split (4) into two heat 
equations 

in Z and Q\Z separately, (44 

together with a gradient jump condition at the interface, 

(4b) 

where au/an = Vu . n (U is necessarily continuous across r). 
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Thus the local velocity is equal to the rate of conduction of 
heat away from the interface. 

Note also that we may easily reconstruct the temperature 
field given the interface history r(t) (and hence the velocity 
V(x, t) for x on r(t)) as 

4x, f) = J1, Gt(x - Y) UO(Y) dy 

+jtj G,-AX-Y) V(Y, t)Wy)ds. (6) 
0 r(s) 

Here dS(y) denotes (d- l)-dimensional surface measure on 
r at y, and G, is the d-dimensional heat kernel 

G,(x) = (47~)~’ exp( - Ix12/4t). (7) 

This simple expression depends on the conductivities and 
capacities in solid and liquid being equal. 

This model of solidification assumes that the interface is 
capable of advancing or retreating as fast as necessary to 
maintain the local equilibrium condition (3); its rate of 
advance is controlled only by the effectiveness of diffusion in 
dissipating its own latent heat. A finite kinetic rate of 
molecular attachment may be modeled by including a linear 
“velocity undercooling” term, replacing (3) by 

u = -ax, - a(n) v, (8) 

where cr(n) >O is an additional anisotropic material 
parameter, an inverse mobility. This term is very strongly 
regularizing [33]; but while we will see below that inclusion 
of finite surface tension (a >O) is necessary to obtain a 
linearly well-posed problem, inclusion of finite kinetics 
(a > 0) is not necessary. In fact, the problem described by 
(8) is of an essentially different character than that described 
by (3), much more similar to the geometric models 
discussed in [35] in which the velocity of the interface 
is explicitly determined by the local environment. Our 
primary goal in the work presented in this paper has been 
to develop a method which directly attacks the difficulties 
presented by (3), that is, a method which works uniformly 
well in the limit a + 0. Hence we shall concentrate our atten- 
tion on the equilibrium formulation (3), and in Section 3 we 
discuss how to extend the variational formulation to 
model (8). 

Remark. For simplicity, we have assumed the heat con- 
ductivities and capacities to be the same in the solid and the 
liquid. This is not entirely realistic; for example, near 0°C 
the heat conductivity of ice is roughly four times that of 
liquid water, and the heat capacity is roughly half [ 151. The 
algorithm presented in this paper may easily be generalized 
to handle two different conductivities, as long as neither one 

is very small; we have not written the details because in most 
solidification problems of realistic interest nearly all the heat 
flows through one phase (usually liquid). Modeling different 
heat capacities is substantially more complicated; among 
other difficulties, the latent heat must depend on tem- 
perature. The more complete situation is analysed in [2]. 

Remark. The same system, (3) and (4), results if one 
considers the isothermal solidification of a liquid containing 
a dissolved impurity [21], for example as in Ostwald 
ripening. Then u represents the chemical potential, a 
separate linear function of solute concentration in solid and 
in liquid; again u must be continuous across r. The latent 
heat L is replaced by the “miscibility gap.” 

Remark. A related two-dimensional system arises in the 
Hele-Shaw flow [29], a viscous fluid pushed by air between 
two plates, where u represents pressure in the liquid. In that 
problem, surface tension is usually isotropic, the field quan- 
tity exists u only on one side of the interface, and, most 
importantly, u does not diffuse but satisfies Laplace’s equa- 
tion with the boundary condition (3), so that knowledge of 
the interface position at any time determines the field in all 
space at that time: the field has no history. This “quasi- 
static” model is a natural limiting case of dendritic 
solidification, for small undercooling and slow growth. Our 
algorithm is not uniformly efficient in that limit. 

1.2. Example Solutions 

Very few analytical solutions are available for the 
problem (3), (4), except in very special cases. This is 
precisely the motivation for developing numerical simula- 
tion methods; they are the most effective way to study large- 
amplitude solutions of the full system. We shall briefly 
describe three special solutions: the Mullins-Sekerka linear 
instability of a flat interface, Frank’s similarity solutions for 
growing spheres, and Ivantsov needle crystals. For sim- 
plicity, in these examples we take isotropic surface energy: 
u(n) = 0 constant. These solutions will later be useful as 
points of reference for our numerics. 

Mullins-Sekerka Analysis 

One solution of (3), (4) is the steadily advancing planar 
interface (0 = all of R* or R3) 

Z(t) = {x < Vf} 

u(x, t) =24,(x, t) = 
1 

0, x< Vf tg) 
-1 +e-w-Yf), x> Vf 

for any V; the undercooling U, has the unique value - 1. 
The Mullins-Sekerka analysis [25] essentially consists in 
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the observation that, to first order in E, the perturbed 
interface 

x = Vt + ee’* sin ~JJ (k>O) 

and the perturbed temperature field 

u(x, t) = uo(x, t) + .zeAt sin ky 

+Be- V(x - Vt) 3 x> vt 
x< vt 

solve (3), (4) if 

L(k, V) = 2k(ok(k20 - V) 

-(k2a+‘)J1+a(k20- V)). _ (10) 

The other coefficients p + , A, B, and C are also determined 
as functions of k and V. If V > 0, then for 0 < k < kcrit( V) the 
interface is unstable to disturbances of wavenumber k, that 
is, L(k, V) > 0, where 

1v 
z-- ,T -’ ov+ 1. (11) 

As velocity increases or surface tension decreases, the band 
of unstable wavenumbers increases. 

In a negative temperature gradient, long-wavelength 
disturbances grow while short-wavelength ones are killed 
by surface tension. Similar results hold for growing spheres 
and circles [24], and it is this instability which grows into 
dendritic arms. This is the essential feature of spontaneous 
pattern formation: the system generates structure on macro- 
scopic length scales but is well-posed on small length scales. 
By contrast, the classical Stefan problem with a=0 has 
1= kV and is therefore either linearly ill-posed if V > 0 
(arbitrarily small-amplitude high-frequency perturbations 
of the initial data grow arbitrarily rapidly) or completely 
stable if V < 0. 

The mechanism of instability is quite simple and general. 
We have noted that the local rate of advance of the interface 
is controlled by how effectively it can dissipate its own heat. 
In a surrounding cold bath, a convex bump has locally 
enhanced heat dissipation and grows more rapidly than the 
neighboring hollows. Surface tension acts in the opposite 
direction, more effectively for short wavelengths. Since the 
instability mechanism is local to the interface, the sur- 
rounding temperature field need not have the exact form 
(9); any field with instantaneous normal gradient V may be 
expected to give the same dispersion relation (10) and 
stability limit (11). 

Frank Spheres 

Despite the above demonstration that an advancing 
interface is more and more unstable as (r + 0, it is possible 
to construct formal solutions with 0 = 0 and completely 
smooth initial data. One class of such solutions is the 
growing spheres developed by Frank [ 121 in one, two, and 
three space dimensions. 

For dimension d = 1, 2, or 3, the solid region is the 
interior of the slab, cylinder, or sphere of radius, 

R(t) = w2, (12) 

parametrized by S, and the temperature field is 

u(r, t)=u(s)= (13) 

t s>S (s=r/t1’2). 

The functions Fd(s), similarity solutions of the heat 
equation, are 

F,(s) = f exp ( -~s2)--~&erfc.(~s), 

in which the special functions are 

erfc(z) =$,” e-“dt, 
n 2 

EI(z)=jm$dt. 
z 

The undercooling U, < 0 and the velocity parameter S 
are related by the jump condition (4b), which gives finally 

Urn= $&WF&(S). (15) 

For a given undercooling, this may be solved numerically 
for S. As U, L - 1, the speed S /1 co. For d= 1 this is not 
inconsistent with the finite-velocity planar solutions (9): in 
the latter, the decay of U(X) as x + co is much slower than 
the Green’s function (7), hence the initial heat distribution 
u,,(x) must extend to co. In (13), the initial conditions are 
constant temperature u = 24,. 

Although these solutions are obtained for rr= 0, the 
evidence is that the primary role of small nonzero surface 
energy is to stabilize the interface, rather than to modify the 
overall behavior. A rough estimate of the maximum stable 
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size of a growing circle in two dimensions may be obtained 2. VARIATIONAL ALGORITHMS 
from the Mullins-Sekerka analysis. From (12), the local 
normal interface velocity is I’(/(R) = $S*/R. The mth mode of The Gibbs-Thomson relation (3) is a local equilibrium 
the circle has wavenumber k = m/R, and if (11) applies, it is condition: in some appropriate sense the interface con- 
stable for tinually adjusts itself to balance bulk energy and surface 

energy. It is natural to wonder whether this may be inter- 
preted as the continual minimization of some combined 
energy. In this section we construct a class of such varia- 
tional formulations of the equations of motion (3) and (4). 

Our computations in Section 4 show that this formula is 2.1. The Variational Approach 
very approximate. Determining stability of a sphere in three 
dimensions requires study of the spherical harmonics as The variational method is a discrete-time formulation. 

in [24]. Thus, we choose a time step At and generate a sequence of 
solid configurations Z,, C, , . . . . and temperature fields u,,(x), 
u,(x), .*a, representing an approximation to the solution at 

Ivantsov Parabolas times 0, At, 2At, . . . . Initial data Z,, uO(x) are specified, 

The other class of known exact solutions is the Ivantsov 
which may or may not satisfy the Gibbs-Thomson condi- 

parabolas [ 161, for vanishing surface tension c = 0 (see 
tion (3). We must determine Z, + 1, u, + 1 from .Z:, , u,. 

reviews [21, 183). In these solutions, the solid is the interior 
At the nth step, we define an energy functional d’“(Z) 

(to the left) of the parabola 
which associates an energy value to every possible con- 
figuration Z which the interface might assume at step n + 1; 

r* 
this energy function depends on C, and u,. Then the next 

x= --+ I/t, configuration Z, + i is determined by the simple prescription 
2P 

c n + i minimizes b”(Z), (19) 

where r* = y* (2D) or y2 + z* (3D), and p is the radius 
of curvature at the tip. With 0 = 0, the temperature u = 0 

where the minimum should be taken over all possible 

inside the needle, and outside, u + u, as 1(x, r)l + 0. The 
configurations, not just those which are “close” to C,. Of 

undercooling u, is related to the Peclet number course, g”(Z) should be such that, most of the time, Z,, i 
is reasonably well behaved and is in fact close to Xc,, and so 
that in the limit At + 0 the sequence {Z-,} converges to a 

p=$pv (17) smooth evolution Z(t) with finite normal velocity V. Once 
c n + 1 has been determined, the new temperature u, + i is 

by determined in a straightforward analog of (6). 

- J”p ep erfc(&) 
In designing a variational algorithm, the object is to 

(2D) choose b” so that the stationarity conditions which any Urn= -pep&(P) (3D). 
(18) smooth local minimum must satisfy are exactly the 

Gibbs-Thomson condition. In this paper, we shall not 

In the planar limit p + co, the undercooling u, + - 1 in 
address questions of existence and regularity of the 

accordance with the planar solution (9). As discussed 
minimizing C, + i . We will generally choose functions for 

above, with r~ = 0 these solutions are completely unstable to 
which existence and regularity are plausible and refer to 

small-amplitude high-frequency perturbations. 
rigorous results where they are known for appropriate 
choices of 8”. 

Unlike the Frank spheres, the Ivantsov needles are 
observed in experiments. Small surface tension 0 # 0 

One component of b”(C) must certainly be the surface 

introduces only a small modification of the tip shape, and 
energy of Z. Recalling that o(n) is the surface energy per 

since the tip is continually advancing, the instability is 
unit area for surface with normal direction n, we define 

continually swept back from it [8]. 
For a specified undercooling uoo, the above solution G(C) = jr 4W) Wx) (r= aq, (20) 

determines only the product pV, not the tip width or 
velocity separately. A major accomplishment of the last few where dS(x) denotes arc length in two dimensions, surface 
years has been the clarification of the role played by small area in three. The surface energy & does not depend on the 
CJ > 0 in selecting one solution out of this family, and the role previous configuration Z,, u,. 
of anisotropy [ 171. If we describe a variation 6.X of the geometry by a smooth 
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function 6p(x) denoting normal displacement, then the first 
variation of &&(.Z) may be written [23,34] 

S&s = 0 s X,(x) f+(x) dS(x). (21) I- 
As noted below (l), 5 is the mean value of o(n), and X, is 
the weighted mean curvature of r, for surface energy 
function a(n). In two dimensions, for a smooth surface 
energy function a(0), we may write 

where 6 is a surface tension 

~(8) = dye) +0(e) _ (22) 

and X is simply the curvature of r. 
The integral (20) is defined for very non-smooth surfaces 

and energy, and Taylor [34] has used appropriate analogs 
of (21) to define weighted mean curvature and motion by 
weighted mean curvature for general crystalline energy 
integrands e(n) and polyhedral surfaces r. That formula- 
tion may be carried over into the present problem. 
Including surface energy only as an integral, from which the 
Gibbs-Thomson relation emerges as a variational condi- 
tion, makes the variational algorithms described here 
extremely flexible and conceptually powerful. 

The other element which must enter the energy functional 
b”(C) is a bulk energy term F&Z’). Below we present 
several alternative forms, but all involve a temperature field: 
an approximation to the field which would exist at the end 
of this time step if the interface moved from r” to the 
candidate position r. 

The interface advances from r” to r if the material in 
between has frozen; similarly, it retreats if material melts. 
Change of phase means local release or absorption of latent 
heat. If heat flow could be ignored, the resulting tem- 
perature field would be 

where xX, xZm are the characteristic functions of C, Xc,. (The 
heat content of each point, U(X) - x(x), is constant for phase 
change without heat flow.) However, heat flow is an 
essential part of the problem. 

The temperature field which we actually do associate with 
any test position Z during the step from n to n + 1 is the 
above temperature field subjected to a suitable amount of 
heat flow, 

un=GAt*u +G z " Af/2 * (XL - XL.), (23) 

where G is the heat kernel from (7). The heat present from 

the previous step is “flowed” for a full step At. The latent 
heat released by the motion is flowed for half a time step 
At/2, as though it were all released at t = (n + i) At. We 
ignore interaction with the box boundary. 

This definition incorporates two essential elements: the 
interface may never move without releasing or absorbing 
latent heat; and the resulting discontinuous temperature 
field must always be “smeared” for a time proportional to At 
before it is used. In a certain sense, we are not allowed to 
look at the system with a time precision finer than At. The 
exact multipliers of At in (23) are not critical; in fact, 
convolution with the fixed kernel GA, may be replaced by 
transport of heat so as to minimize the Dirichlet integral, 
subject to a constraint on the maximum transport distance 
PI. 

Let us note the first variation of &k(x) with respect 
to small changes 6C, described again by a small normal 
displacement 6p(x). Since heat is released or absorbed only 
on the interface, 

%(x) = J: GA&X - Y) b'(Y) ds(J') 

for xEO. 
We may now complete the definition of the energy P(Z). 

We choose a function F(u, (4), where 4 takes the values 0 
and 1, and define 

and 

Below we present two different choices of F(u, d), both of 
which give rise to the Gibbs-Thomson relation. 

Choice of F tells us how to obtain the next interface 
position C, + r. We complete the algorithm by specifying the 
temperature field u,, 1 for the next step as 

24 tl+l=U 2.+,* (24) 

If the (Z,} converge to some Z(t) as At -0, then the 
(U,,(X)} converge to u(x, t) which satisfies (4): clearly the 
heat equation is correctly approximated away from r(t), 
thus (4a); and heat is conserved in the neighborhood of 
r(t), thus (4b). By virtue of (24), whatever stationarity con- 
ditions are satisfied by the minimizing Z, are satisfied by 
Z(t) and u(t) at each time t = n At. This heuristic reasoning 
may be made rigorous for the second example below. 

581/106/2-10 
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2.2. Two Example Functionals 

“Free Energy” Function 

If temperature and pressure are held constant, a bulk 
material changes phase so as to minimize its Gibbs free 
energy. This principle may be used to obtain the 
Gibbs-Thomson relation as a necessary condition for a 
stationary equilibrium configuration [ 18, 13 1. However, 
time-dependent solidification is a non-equilibrium 
phenomenon and, as emphasized above, phase changes are 
necessarily accompanied by temperature changes (see the 
discussion of nucleation below). For these reasons, the 
relevance of free energy is not entirely clear. We take 
the Gibbs-Thomson relation as an empirically verified fact 
and present the following in the spirit of a mathematical 
construction. 

We take the energy function 

{ 
$4 

F(u, d)= lu 
i= 1, 

-3 9 d=O. 

Just as for the physical free energy, F is minimized at a fixed 
u > 0 if 4 = 0, corresponding to liquid; for u < 0, solid with 
4 = 1 is preferred. This function linearly penalizes super- 
cooled liquid or superheated solid. Thus, minimization of 
8”(Z) may be thought of as the instruction that the material 
should minimize its total (bulk + surface) free energy at 
each time step, subject to the constraints that interface 
motion releases heat, and that in one step, heat may diffuse 
no farther than appropriate for the step length At. This is 
essentially the same energy function considered in [37] for 
minimization in a predetermined temperature field. 

The first variation of 6’; is 

SS;=S j-ziu;dx-JQ;zfu;dx) 
( 

+s 
u; 6p(x) dS(x). 

az 

The first two terms cancel to leading order in At (the inter- 
face appears planar on length scales U(At’/*), so heat 
released on the interface flows half into the solid, half into 
the liquid), and the total energy change is 

66” = SS; + cWs = Jr (u’& + 6X,) 6p(x) dS(x). 

Thus, Z can minimize 8” only if 

u;+oxo=o on r, 

the Gibbs-Thomson condition. 

Note that although 8’“(L) is minimized at each step, the 
sequence of minimum values gn(Cn) may increase. b”(Z,) 
differs from cY-~(.Z’~) by convolution of U” with Gdr, and 
it may happen that 8n(Zn)>8”P’(Z,). Thus, although 
the minimization guarantees that b”(C, + i) < &“(Zn) and 
&Y-‘(Zn) d &-l(Zn--l), we may not conclude that 
b”(C,)<b”-‘(Zc,_,) or that b”(Z:,+,)<&-‘(L’,). Of 
course, physically we expect the system to proceed in the 
direction of decreasing free energy. 

Lyapunov Function 

Our second example is 

F(u, 4) = $*, 

independent of 4. The first variation of 8; is 

a&n,= j am Wk(x) dx = j u;(y) My) dS( y), 
R I- 

where 

C(x) = J, Gm(x - Y) U:(Y) dy 

is a locally averaged temperature which approaches u;(x) 
as At + 0. Again the stationarity condition is 

ii;+fM~=o on r 

and if a limit exists as At + 0, the limit function must satisfy 
the Gibbs-Thomson relation. 

In this case, 8; decreases under heat flow, so &“(Z,,) < 
gnPi(Z,,) and gn(Zn) is nonincreasing, making rigorous 
estimates possible. Existence of the minimum at each step, 
and convergence almost everywhere as At + 0, have been 
demonstrated in [22]. Existence and convergence have 
been demonstrated in [2] for the highly nontrivial exten- 
sion to nonequal heat diffusivities and especially heat 
capacities. 

Numerical calculations using a direct implementation of 
this method have been presented in [3], obtaining agree- 
ment with the Mullins-Sekerka stability theory for planar 
interfaces. That implementation is far too inefficient to 
compute complicated shapes; for realistic simulation the 
approximate-temperature formulation of Section 3 must be 
used. 

2.3. Nucleation, Jumps, and Nonuniqueness 

We conclude this section by briefly describing three 
additional interesting aspects of the variational method. 
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Nucleation and hence 

For any temperature u,(x), the configurations C = fa (all 
liquid) and .Z = Q (all solid) are local minima, but not 
necessarily global minima. Suppose for simplicity that the 
initial temperature u0 < 0 is constant and that C, = 0, and 
let us consider nucleation of round solid seeds; that is, let us 
compute the energy of configurations Z(R) = { 1x1~ R}. 

~v(~)-~v(~o)~(da+(uo+f)R)odRd-l (R $ At”2). 

We may then observe that 

The temperature uZ = u0 + GdrlZ * xZ. If R 6 At1’2, then 
the seed is like a point source of heat, with total heat release 
equal to its volume o,Rd, and 

1. If u. -C -4, then b(C) < &(Z,) for large R and 
nucleation occurs. In fact, b(C) decreases without bound as 
R + cc and the global minimum is to freeze the whole box 
(C=Q). 

2. If u. < 0 is close enough to zero and CT is large enough, 
then it is plausible that b(R) > &‘(Z’) for all R >O, and 
nucleation does not occur. This is the reason we may look 
for minimizing configurations only close to Z,: we do not 
have to consider adding new pieces of solid in every region 
of undercooled liquid. 

U.&X) X uo + %Rd%,,2(X) (R < At”*), 

where od is the volume of the d-dimensional unit sphere. If 
R $ At’12, then heat flow may essentially be neglected and, * 
for purposes of integration, 

uz(x) = uo+ 1, I4 <R (R % At”‘). 
UOY I4 ‘R 

The surface energy of the seed is 

In the free-energy formulation, 

IfReAr 1/2, this becomes 

&(C)z -$ s U. - fOdRd + (240 + OJdRdG,t,2(o)) (I@‘, 
R 

since j G, = 1, and so 

Note that, contrary to our intuition for systems maintained 
at a fixed temperature, the free energy reduction resulting 
from reducing the undercooling in the surrounding liquid is 
actually more important than the free energy reduction 
from the phase change within the seed (if lug 1 < $). This is a 
consequence of the finite time step At: heat does not reach 
the boundaries and vanish into a reservoir. 

If R % At”*, then 

Ug + WdRd, 24~ = (Uo + 1) W,Rd, 

In the case of quadratic energy, as discussed in [22], the 
calculations and conclusions are similar. We find 

b(z) - &‘(c,) % (da + 2u,R) CO,Rd- ’ (Re At’12) 

and 

(R B At1’2); 

The same conclusions apply. 

“‘Jumps” 

Luckhaus [22] has shown that for the Lyapunov 
formulation, the globally minimizing A’, + i is not always 
arbitrarily close to C, as At -+ 0. In the neighborhood of 
changes of topology, for example as two pieces of solid or 
two parts of the solid approach each other to merge, there 
is always a finite distance h such that when they are within 
distance h it becomes energetically favorable to “jump the 
gap” and form a bridge; h does not go to zero as At + 0. The 
formulation in [22] includes an additional parameter ,4, 
which does not affect smooth motion; but increasing A 
reduces the jump h. 

Nonuniqueness 

The Mullins-Sekerka instability has a discrete-time 
analog. If one considers a planar interface at x = 0, in a tem- 
perature field uo(x) with u,(O) = 0, then one may study the 
energy b(Z) for interface configurations of the form 
x= a sin(ky- 4), as a function E(a) for fixed k; by sym- 
metry, E is independent of 4. One determines that (1) 
E’(0) = 0, as required by the symmetry 4 -+ CJ~ + ?I, and (2) 
E”(0) < 0 if z&(x) is sufficiently negative in a neighborhood 
of the origin. Thus the minimizing configuration must have 
a # 0, and since the phase C$ is arbitrary this is a spontaneous 
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symmetry breaking for finite At. As At + 0, the amplitude 
a of the minimizing configuration approaches zero, so 
that the continuous evolution Z(t) is the planar solution 
corresponding to the planar initial data. 

3. AN EFFICIENT VARIATIONAL ALGORITHM 

The variational algorithms presented in the last section, 
although elegant and appealing, are essentially completely 
impractical for actual computation, because of the need to 
model the heat diffusion for each test position. In this sec- 
tion, we present an efficient, practical variational algorithm, 
which relies on an estimation of the heat flow, precomputed 
in each step before the minimization of interface energy is 
begun. 

We first present the two key steps in the approximate 
formulation, in the same discrete-time, continuous-space 
formulation which was used in Section 2, then show how 
the method may be extended to finite kinetic mobility, and 
briefly discuss the actual discrete representation in the 
computer. 

3.1. Temperature Approximation 

The first step in constructing the practical variational 
algorithm is the precomputation of an approximate tem- 
perature field H”(x). In the formulation of Section 2, the 
temperature field u:(x) associated with every candidate 
position Z is a function of all x E Q. But in fact, the only rele- 
vant values of u; are those on the potential new interface ZY 
With this motivation, we approximately define the single 
function H”(x) as 

H”(x) x 

i 

u;(x), where Z is such that the new 
interface r = &Z passes through x, 
and r is locally parallel to r,. 

This is well defined and may be further approximated, 
under the assumption that the heat diffusion radius API2 is 
everywhere intermediate between the two lengths 

VAt, the normal motion of the interface in time At, 

a?‘, the local radius of curvature, 

which is true asymptotically as At +O for a smooth 
interface moving at finite speed V. Then heat flow is locally 
one-dimensional and we write 

H”(x) = G,, * u, + v,(x), (25) 

where the “normal slope” s is the value at the origin of the 
one-dimensional Green’s function 

s = G;,,(O) = (2~ At) - l/2 

and p,(x) is the signed distance from x to the starting 
position r, : 

P,(X) = 
dist(x, r,), x E a\z, 

-dist(x, r,), XEZ”, 

where dist(x, r,) denotes the usual distance from a point to 
a set 

dist(x, r) = j;f, IX - ~1. 

This function is well defined for arbitrarily complicated r,,, 
and if r,, is smoothly curved, p,(x) is smooth in a 
neighborhood of r,, (to a distance equal to the shortest 
radius of curvature of r,), with lVp, 1 = 1. 

Once the function H” has been precomputed, the new 
interface .X, + i is determined by the minimization prescrip- 
tion (19) with 

cP(Z) = j H”(x) dx + 8&Z). 
z 

This problem is known as the “prescribed mean curvature 
problem” because the stationarity condition is 

H”+C&=O. (26) 

It has been extensively studied [ 14, 371, and effective 
numerical algorithms have been developed [ 5,6]. Existence 
of the minimum at each step is essentially guaranteed for At 
small enough, since 1 H”I increases rapidly, with gradient 
8(At -ij2), away from r,. Thus nucleation is not a concern 
in this model. 

The approximation (25) is used only to determine the 
new interface position. Once we have determined L’:, + , , we 
evaluate the new temperature u,+ i by (23) and (24). Under 
the assumptions that the interface is smooth and smoothly 
moving, 

H”(x) z u;(x) = u,+ 1(x), x on r,+,, 

and, by virtue of (26), the Gibbs-Thomson condition is 
approximately satisfied at the end of the step. 

Remark. The details of the above formulation are quite 
robust. In general, we may introduce four parameters 
al, a2, a3, /?, and define an algorithm by 

H”=G bl, Al * %I + wfl, s = (47~ a2 At)-8 

c n + I minimizes P(Z) 

%+1 = GA, * un + G,, AI* (xzn+, - xzn). 

Here a1 represents a “pre-flow” of the starting temperature 
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distribution, a2 and /I are the slope and exponent of the Our belief is that mobility, especially its direction- 
predicted temperature field, and a3 is the “post-smoothing” dependence, plays a key role in producing the shapes of 
of the newly released heat. The method converges as long as snowflakes, and a smaller role in determining the shapes of 
0 <aI, a*, a3 < 1 and 0 c /? < 1, with a few exceptions (for solids freezing from a melt. In this paper we focus on the 
example, if a1 = a3 = 0, then H”+ ’ is discontinuous and the case a = 0; in future work we shall consider the effect of 
performance is very poor). Numerical experiments and the introducing mobility limitations. Note that the variation of 
heuristic reasoning of Section 2 show that the most effective a between different directions may be arbitrarily large; it is 
values are not necessary that a(n) be a convex function of direction. 

a1 = 1, a2=a3=1 
23 a=$, 

as presented above. 
3.3. Discrete Implementation 

Finally, we briefly discuss the discrete implementation 
of this approximation in an actual computer program. 
Temperature and other functions of x are represented by 
their values at nodes of a uniform square grid 

3.2. Finite Mobility 

In the above context, it is very simple to implement a 
finite coefficient of kinetic mobility a(n) > 0 as in (8).-Let us 
write the anisotropic kinetic coefficient as 

0) =&(n), 

wheref, has average value 1. Then we modify (25) to 

H”=G,,*~,+(2nAt)-“~p,+~At-~~,, 

in which the anisotropic distance function is 

A(x) =fMx)) P,(X), 

n(x)= w(p,(x)) ST 

where x* is the foot of x in r,; if x is near r,, then n(x) is 
roughly the local outward-pointing normal to r,. For x on 
a candidate smooth interface r close to r,, 

H”(x) w u”,(x) + $ p,(x). 

The stationarity condition (26) is then approximately 

and the velocity-dependent Gibbs-Thomson relation (8) 
emerges in the limit At --f 0. This is essentially the approach 
used to define motion by weighted mean curvature for 
general non-smooth energy functions in [34] (using 
isotropic a). 

Note that, for the discrete-time problem as for the 
original, introduction of a > 0 is strongly regularizing; the 
normal slope of H” becomes O(At-‘) rather than O(At-“2). 
A rigorous proof that the sequence {C,} converges to an 
evolution satisfying (8) may be found in [ 11. 

uii = u( i Ax, j Ay ), i=O, 1, . . . . N,, j=O, 1, . . . . NY. 

When values at intermediate points are required, they are 
determined by bilinear interpolation. No account is taken of 
the interface position in representing a temperature field; 
since u has a discontinuous gradient, bilinear interpolation 
is only first-order accurate there. 

The interface r is represented as the polygonal curve 
joining control points Pi, j = 0, 1, . . . . N- 1. The number of 
points changes from time step to time step as points are 
added or deleted. The adding and deleting are done so as to 
maintain spacing of consecutive points close to a specified 
length d, : 

0.7d, < IPi- pj+, 1 < 1.5& (27) 

No account is taken of local curvature in these tolerances. 
An advantage of the variational formulation is that we do 
not have to be especially careful in this adding and deleting, 
since the primary information controlling the position of the 
interface is stored in the temperature field; for example, 
numerical viscosity as discussed in [30] is not a concern. 
We demonstrate this in our example calculations below. 

One disadvantage of this representation is that changes of 
topology are difficult to implement; in three dimensions 
they would be nearly impossible. As our computations in 
Section 4 show, much interesting behavior happens before 
any topology changes are necessary. Also, note that the 
algorithm we have presented does not impose any particular 
discrete representation; a different one could be introduced 
if desired for particular reasons. 

The discretization parameters are therefore the time step 
At, the grid spacings Ax and Ay, and the point spacing do. 
We usually take do = Ax = Ay, so that there is only one 
parameter for time discretization and one for space 
discretization. 

The first task is to compute the distance function p,(x) at 
each grid point. This is easily done by using a linear 
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approximation to the distance function for each segment of 
r,, in the appropriate wedge of validity. At each step, we 
need values only in a narrow stip around r,. Since p,(x) is 
smooth, bilinear interpolation is adequate between grid 
points. 

For the minimization, we use the techniques developed in 
[S]. The minimum is sought among displacements of the 
control points along local normal vectors. That is, if nj, 
j= 0, 1, . ..) N, are a suitable discrete approximation to the 
local normals, the candidate new interfaces are the polygons 
joining 

Pi(i) = Pi” + Ajnj. 

Approximation of the energy function &Y(r) gives an 
energy function E(h) on RN, which is minimized by a 
modified Newton’s method. Note that we never have to 
compute the whole integral In H”; for Newton’s method we 
need only the gradients and Hessian matrix which are local 
functions of the point positions. Since the Hessian % is 
tridiagonal, the linear algebra is straightforward; we use a 
solver written and generously shared by Maurizio Paolini, 
which performs modified Cholesky decomposition when X 
is not positive definite. For small dt, the starting position r, 
is very close to the minimum, and although E(I) is only C’ 
due to the bilinear interpolation of H”, the minimum is typi- 
cally attained after four or live iterations. We do not perform 
any line search, and an indefinite 2 is rarely encountered. 

When the minimum has been reached, a “respace” 
routine is called which adds and deletes points to maintain 
the constraints (27). This perturbs the interface position, 
but freedom to make this kind of perturbation is one of the 
primary advantages of using a variational formulation, as 
we demonstrate in Section 4. 

In computing the heat released onto the square grid by 
the motion from one polygonal interface configuration to 
another, we use a “volume fraction” routine. Given a 
polygonal interface, this determines for each cell of the grid, 
the exact fraction of the area of that cell which is inside the 
interface, and partitions that area among the nodes at the 
four corners in proportions determined by the first moments 
of the area within the cell. That is, it goes from a geometrical 
representation of a region Z to a grid representation of the 
characteristic function xZ, exactly preserving the area 1x1 
and the three first moments f, x, fxy, and f, xy. The 
difference of characteristic functions is taken on the grid and 
added to the temperature field. 

Solving the heat equation on a square grid is an extremely 
standard task, and quite straightforward in this case of 
equal diffusion coefficients. If the time step At is short, we 
take a suitable number of steps with the explicit method 
(since this takes few operations per node and vectorizes very 
well, it is often the method of choice for the time steps of 
interest). If a longer time step is required, we use the fully 

implicit method, solving the resulting linear equations by 
Fourier transform in one direction (x or y) coupled with a 
tridiagonal solver in the other. Higher-order time discretiza. 
tions such as Crank-Nicholson, or splittings such as alter- 
nating direction implicit, do not give acceptable results for 
this problem, since part of the initial data at each step (the 
difference of characteristic functions) is far from smooth. On 
any reasonably-sized grid, solving the heat equation is the 
most time-consuming part of the calculation. 

The resulting code contains a great deal of geometric 
complexity. This is managed by using the C++ object- 
oriented programming language, which permits definition 
of “classes” such as points, vectors, loops of points to repre- 
sent the interface, etc. Once fundamental operations are 
defined for each class, the classes may easily and safely be 
combined in many different ways. Because data local to 
each class is well-hidden, there is not the explosion of 
complexity which would result if Fortran or even C were 
used. 

4. COMPUTATIONAL EXAMPLES 

We now present results obtained by the algorithms 
described in Section 3, in two space dimensions. We shall 
first present test examples which verify the correctness of the 
code, then compute some interesting and realistic dendrite 
shapes. 

4.1. Circular Symmetry 

The first test we perform is to reproduce the exact spheri- 
cal solutions (12), (13) for cr = 0 presented in Section 1. We 
may easily set 0 =0 in our computation without violent 
instability, if we prescribe circular initial data and at each 
step search for a minimizing configuration only among 
circular configurations with specified center. This problem 
is thus an excellent test of the heat-release, heat-flow, and 
minimization parts of the algorithm, with a minimum of 
geometrical complexity. 

We take the undercooling U, = - f, for which (15) gives 
S = 1.56. We run the computation from t = 1 (R = 1.56) to 
t = 2 (R = 2.21). The domain size is 16 x 16 with insulating 
boundary conditions for temperature; for these parameters, 
the maximum temperature of the exact solution on the 
boundary at t = 2 differs by only lop4 from U, , so the finite 
domain size does not affect the growth of the seed. With the 
point spacing d, equal to the grid spacing Ax, the only com- 
putational parameters are Ax and At. As a function of these 
parameters, the error in final radius is shown in Table I. 

The algorithm is more or less converging toward the 
correct solution as the computation is relined, although the 
rate is rather irregular. These data and others indicate that 
the rate of convergence is generally half-order in Ax and At. 
In this test, the minimization subroutine is almost never 
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TABLE I 
Radius Error-Frank Sphere Solutions 

At 

AX 0.05 0.02 0.01 0.005 0.002 

0.2 0.083 0.040 0.010 -0.018 - 0.078 
0.1 0.063 0.0052 0.035 0.019 -0.0089 
0.05 0.067 0.037 0.024 0.0021 0.015 
0.02 0.068 0.039 0.026 

satisfied with its convergence to a minimum, causing the 
size of the error to be very erratic. We believe this is due to 
poor approximation of the gradient and Hessian of the 
energy function; the discrete expressions used are only 
approximately consistent with each other due fo the 
non-smoothness of the integrand H”(x) as represented on 
the finite grid (H” is piecewise bilinear, hence only Co). The 
full-scale computations below do not show this reluctant 
convergence, thus these poor results are not indicative of the 
general performance of the algorithm. 

We now illustrate the robustness of the variational algo- 
rithm to perturbations of the interface position. We again 
run the Frank-sphere test problem, taking dx = 0.1, 
At = 0.01, except that at t = 1.3 we “kick” the interface: after 
finding the minimum but before releasing the new heat, we 
increase the radius by 0.02. The radius error as a function of 
time is shown in Fig. 1; following the kick, the error rapidly 
returns to close to its value in the absence of perturbation. 

This happens because the information which determines 
successive interface position is stored primarily in the tem- 
perature field rather than in the previous positions. When 

FIG. 1. Robustness of variational algorithm. The graph shows the 
radius error, relative to the exact solution, for a circularly symmetric 
interface. In the run shown by the solid line, the interface is “kicked” at 
t = 1.3. Because heat is exactly conserved, the error decreases following the 
perturbation, returning to nearly its unperturbed value (dashed line). 

the radius is suddenly increased, heat is released, the 
neighborhood of the interface becomes hot, and the inter- 
face retreats on subsequent steps. In this mechanism, it is 
essential that heat be conserved exactly; as discussed in 
Section 2, it is an essential feature of this problem that we 
may never contemplate motion of the interface without 
associated heat release or absorption. It is because of this 
robustness that we may add and delete points at will to 
maintain the spacing criterion (27). 

4.2. Isotropic Surface Energy 

All the large-scale computations we present here are 
performed on a 40 x 40 spatial domain, with insulating 
(homogeneous Neumann) boundary conditions for tem- 
perature. The initial temperature is always U, = - 4 outside 
the seed, and zero inside. The initial configuration is always 
an irregular polygon of radius roughly 0.1. The computa- 
tion is stopped when any temperature value on the 
boundary rises to iu,, indicating that the presence of the 
boundary is beginning to affect the seed growth. 

We always take no kinetic limitation, o! = 0; the only 
feature which varies between our four different examples is 
the magnitude and anisotropy of the surface energy 6. In 
future work we shall carry out the program presented in the 
Introduction by exploring the effect on the interface 
morphology of varying the undercooling and the magnitude 
and anisotropy of CL 

We always use the time step At = 0.01; in all computa- 
tions except the last (d = 0.001) the grid is 400 x 400; thus 

h 
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FIG. 2. Isotropic surface energy: 0 = 0.002. This is the “tip-splitting” 
structure characteristic of radial growth with no material anisotropy, 
starting from the initial speck in the center. We plot the interface at time 
intervals of 5; the final time is 40. 
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the grid spacing and point spacing are Ax = do = 0.1. All 
computations were performed on a Silicon Graphics Iris 
4D-50GT workstation. 

For the first example, we take isotropic surface energy, of 
magnitude o = 0.002. The resulting shape is shown in Fig. 2. 
We see the “tip-splitting” instability characteristic of radial 
growth with no material anisotropy, as in Hele-Shaw flow 
(see [18]). The final interface configuration has 2999 
points; the computational time is about 22 h. 

In Fig. 3, we show a few early stages in the initial growth 
of the seed. The initial conditions are an irregular hexagon 
of radius R = 0.1. By t = 0.1 (10 computational steps) the 
hexagon has become nearly a circle, of radius R = 0.58. 
As the seed grows, it maintains a roughly circular shape, 
but the small perturbations left over from the initial 
data gradually grow by the Mullins-Sekerka instability 
mechanism (Section 1). At t = 1, six bumps are visible; these 
correspond to the six vertices of the initial shape and grow 
into the six major arms of Fig. 2. 

The approximate formula (16) gives Rcrit x 0.12 for m = 6 
and S= 1.56 corresponding to u, = - $. Since this seed is 
evidently stable to linear perturbations up to around 
R = 0.6, and unstable for larger R, we conclude that (16) is 
accurate only to within about a factor of 5. 

The detailed structure of the initial data is quickly washed 
out as the seed settles into the “attracting” circular shape 
determined by the surface energy; the only role of the initial 
data is to supply the initial perturbation to the intrinsic 

-2 0 2 -2 0 2 

FIG. 3. Isotropic surface energy u =0.002: Early stages. We show 
several stages in the initial evolution of Fig.2. The pictures have been 
scaled so that each has the same area as the unit circle; the radius R is the 
scaling factor, that is, the radius of a circle with the same area. The small 
circles represent computational node points, which are maintained with 
spacing near do = 0.1. 

instability mechanism. With isotropic surface energy, no 
mode or orientation is inherently preferred; the mode and 
orientation of the initial instability come from the starting 
shape. In this sense information from the initial conditions 
survives into the final structure. Contrast this with Figs. 4b 
and 5. 

4.3. Anisotropic Surface Energy 

For anisotropy with mode number m, we take surface 
energy of the form 

a(8)=~~(1+6,cosm(8-~)+6,cos2m(f3-q5)), (28) 

where 0 is the angle of the local normal vector measured 
counterclockwise from the positive x-axis, 0 is the average 
magnitude of the surface energy, and IP is a phase angle. We 
take the coefficients to be 

4 1 
4=jgy, 

l 6,=-A- 
34m2-1’ 

since for these values the surface tension (22) is 

dye) + a(e) = $5 sin4 $2(0 - 4) 

with a fourth-order zero at 8 - 4 = 2mc/m. Thus these values 
give the “most anisotropic” function of the form (28) for 
which the surface tension is nonnegative. In geometrical 
terms, the motivation for introducing the second term in 
(28) is to sharpen the corners of the Wulff shape and more 
closely mimic a crystalline material whose equilibrium 
shape is actually a polygon. The vanishing of the surface 
tension at isolated angles does not appear to cause any 
computational difficulties. 

We show three examples, all with m =4 and with 
5 = 0.005, 0.002, 0.001. The results are shown in Figs. 4a, b, 
and c. In these three examples, we have chosen the phase 
angle 4 = n/4, so that horizontal and vertical faces are 
mildly preferred over diagonal ones. This choice causes the 
dentritic arms to extend diagonally, letting them go for 
longer before reaching the box corners. As a check of the 
effect of the underlying square grid, we have performed the 
same computations with 4 =0 so that the arms extend 
horizontally and vertically; the shapes and quantitative 
checks below are similar. In Figs. 4a and b, the final inter- 
faces have around 2000 points, and the computation times 
are about 8 h. In Fig. 4c, a liner 600 x 600 grid is required; 
the final interface has 6484 points and the computation time 
is about 12 h. 

The resulting shapes differ dramatically from Fig. 2. Four 
major arms emerge in the diagonal directions determined by 
the interface anisotropy. From the spacing of successive 
time slices, it is clear that the tips of the arms are moving at 
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FIG. 4. a. Four-fold anisotropy: c = 0.005. By contrast to Fig. 2, four strong arms appear, their number and directions determined by the surface 
energy function; these arms grow much more rapidly than the radially symmetric structure. Side-branching instability is barely visible. Time interval is 
2.5; maximum time is 21.3. b. Four-fold anisotropy: 0 = 0.002. With smaller surface energy, the side branching is more developed. Time interval is 4; 
maximum time is 27.1. c. Four-fold anisotropy: cr = 0.001. The side-branching is well developed, and we see competition among neighboring side fingers. 
Note the four small “vestigial” arms; these are generated by the irregularity of the initial seed but lose to the large arms because their directions are 
unfavored by surface energy. Time interval is 2; maximum time is 14.9. Growth is twice as rapid as in Fig. 4b. 

roughly constant velocities and that they have reached 
steady-state parabolic shapes. As the surface energy is 
reduced, more structure appears. The final shape in Fig. 4c 
is very similar to dendritic profiles observed in experiments 
Clll. 

In Fig. 5, we show the early stages of development for the 
case 5 = 0.002 in Fig. 4b. Here, the initial shape is an 
irregular pentagon; under the influence of surface tension, 
the seed rapidly assumes a roughly square shape, then 

becomes unstable to a perturbation whose mode number 
m = 4 and orientation are determined by the surface energy 
function. In contrast to Figs. 2 and 3, the large-scale struc- 
ture which ultimately develops has absolutely no memory of 
the initial conditions. This appears to be a consequence of 
the anisotropic surface energy, which provides an intrinsic 
preference to outweigh the weak influence of the initial 
conditions. 

The first quantitative test we can apply is to measure the 
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FIG. 5. Four-fold surface energy, c = 0.002: Early stages. By contrast 
to Fig. 3, no memory is retained of the initial pentagonal shape; it is 
swamped by the four-fold anisotropy of the surface energy. 
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tip velocities and curvatures, and compare the Peclet num- 
bers (17) with the value corresponding to the Ivantsov solu- 
tions of Section 1: relation (18) givesp = 0.187 for U, = - $. 
These quantities are easily determined by least-squares 
fitting of a parabola to the tip profile. In Fig. 6, we plot the 
numerically determined value of p for the third example, 
5 = 0.001. The numerical noise is to be expected, since we 
are doing a polynomial lit to each time step independently 
and then differencing in time. The agreement is evidently 
quite good. In Table II, we display time-averaged values of 
tip curvature p, tip velocity V, and Peclet number p for the 
three cases. In each, we take a time average (following an 
initial transient period) and average over the four tips of 
each run. The values of the Peclet numbers are remarkably 
good; in the worst case the error is 6 %. 

The second quantitative test we may apply is to observe 
that in the original partially nondimensionalized system (3) 
and (4), (r is the only parameter appearing; it has the dimen- 
sions of length. Thus, for a given undercooling and a given 
direction dependence of a(n), all lengths in the problem 
must be proportional to 0. Time must scale like C* to 
preserve the diffusivity D = 1; hence velocities should scale 
as 0-l. Looking at Table II, we see that we have the proper 
scaling in going from C? = 0.002 to 5 = 0.001: the tip radius 
p is halved, and the velocity Vis doubled. However, the case 
5 = 0.005 is not consistent with this scaling. 

We may also look at the spacing of side branches on the 
dendritic tips. This spacing presumably has some com- 
plicated dependence on undercooling, but must be simply 
proportional to surface energy. An extremely rough eyeball 
counting of local maxima shows eight small bumps on the 
side of the arms in Fig. 4a, six in Fig. 4b, and 12 in Fig. 4c, 
with corresponding spacings 2.5, 3.33, and 1.67. Again, the 
second and third computations are in agreement with each 
other and with the dimensional structure of the problem; 
the first simply appears to be wrong despite its correct 
appearance. Note that, whereas analysis of the Peclet num- 
ber is a comparison with a zero-surface-energy solution, and 
so might be expected to be inaccurate for the larger value of 
c?, the dimensional analysis has no such restriction. Note 
also that the three cases of Figs. 4a, b, and c are in fact the 
same problem on different length and time scales; treating 
them as different provides a valuable check on the accuracy 
of the numerics. 

TABLE II 

Dendrite Tip Properties 

FIG. 6. Comparison to Ivantsov solution: cr = 0.001. We plot the 
approximate Peclet number p = $p V for the computation of Fig. 4c, for 
t >4 when the parabolic tip structure has established itself. The four 
different lines are the four tips. The dashed horizontal line shows the 
Ivantsov value p = 0.187. Despite the noise in the signal, the tit is evidently 
quite good. 

d P V P 

0.005 0.344 1.136 0.195 
0.002 0.467 0.851 0.198 
0.001 0.240 1.590 0.189 
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Presumably the first computation is underresolved in 
some sense, despite its agreement with the Ivantsov model. 
Evidently the Peclet product is a more fundamental quan- 
tity than either the radius or the velocity, since it depends on 
the structure of the diffusion field over a large neighborhood 
of the tip; it is entirely plausible that numerical error could 
produce wrong values of p and V while respectingp. These 
computations and a few others may be seen on video in [4]. 

CONCLUSIONS 

We have presented a completely new variational 
algorithm for numerically solving the model equations 
describing dendritic solidification. This method has no 
constraints on the value of the velocity-kinetic coefficient, 
and hence it is able to model a natural physical regime 
which so far has been completely inaccessible to numerical 
computation. 

We have computed dendritic structures with isotropic 
and anisotropic surface energy functions, with initial condi- 
tions of a very small irregular seed, intended to mimic snow- 
flake nucleation in the atmosphere. With isotropic surface 
energy, the asymmetries of the initial conditions provide 
initial perturbations for the Mullins-Sekerka instability, 
and thus propagate into the large-scale structure. With 
anisotropic surface energy, the material properties force the 
growing solid into a characteristic shape in which the initial 
conditions are completely forgotten. 

For anisotropic energy, parabolic dendrite tips emerge. 
We have quantitatively checked tip radii and velocities and 
compared them against exact Ivantsov solutions, obtaining 
agreement within a few percent. 

In future work, we intend to investigate the effects of 
anisotropic mobility, ultimately to obtain a complete 
catalog of crystal shapes as functions of a few environmental 
and material parameters. 
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